Monatomic phase change memory

Monatomic phase change memory

https://ift.tt/2MvxHHj

  1. 1.

    Intel® Optane™ Technology (Intel Corporation, accessed 16 August 2017); https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

  2. 2.

    Choe, J. Intel 3D XPoint Memory Die Removed from Intel Optane™ PCM (Phase Change Memory) (TechInsights, accessed 16 August 2017); http://www.techinsights.com/about-techinsights/overview/blog/intel-3D-xpoint-memory-die-removed-from-intel-optane-pcm/

  3. 3.

    Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).

  4. 4.

    Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2016).

  5. 5.

    Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

  6. 6.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotech. 11, 693–699 (2016).

  7. 7.

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

  8. 8.

    Matsunaga, T. et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011).

  9. 9.

    Debunne, A. et al. Evidence of crystallization-induced segregation in the phase change material Te-rich GST. J. Electrochem. Soc. 158, H965–H972 (2011).

  10. 10.

    Xie, Y. et al. Self‐healing of a confined phase change memory device with a metallic surfactant layer. Adv. Mater. 30, 1705587 (2018).

  11. 11.

    Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

  12. 12.

    Salinga, M. & Wuttig, M. Phase-change memories on a diet. Science 332, 543–544 (2011).

  13. 13.

    Raoux, S., Jordan-Sweet, J. L. & Kellock, A. J. Crystallization properties of ultrathin phase change films. J. Appl. Phys. 103, (2008).

  14. 14.

    Raoux, S., Cheng, H.-Y., Jordan-Sweet, J. L., Munoz, B. & Hitzbleck, M. Influence of interfaces and doping on the crystallization temperature of Ge-Sb. Appl. Phys. Lett. 94, (2009).

  15. 15.

    Simpson, R. E. et al. Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Lett. 10, 414–419 (2010).

  16. 16.

    Chen, B., tenBrink, G. H., Palasantzas, G. & Kooi, B. J.Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles. Sci. Rep. 6, 265 (2016).

  17. 17.

    Hauser, J. J. Hopping conductivity in amorphous antimony. Phys. Rev. B 9, 2623–2626 (1974).

  18. 18.

    Koelmans, W. W. et al. Projected phase-change memory devices. Nat. Commun. 6, 8181 (2015).

  19. 19.

    Krebs, D. et al. Threshold field of phase change memory materials measured using phase change bridge devices. Appl. Phys. Lett. 95, (2009).

  20. 20.

    Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

  21. 21.

    Schroers, J. Glasses made from pure metals. Nature 512, 142–143 (2014).

  22. 22.

    Greer, A. L. New horizons for glass formation and stability. Nat. Mater. 14, 542–546 (2015).

  23. 23.

    Raty, J. Y. et al. Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015).

  24. 24.

    Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Phys. Rev. B 93, (2016).

  25. 25.

    Boniardi, M. et al. Statistics of resistance drift due to structural relaxation in phase-change memory arrays. IEEE Trans. Electron Devices 57, 2690–2696 (2010).

  26. 26.

    Watanabe, K., Kawasaki, T. & Tanaka, H. Structural origin of enhanced slow dynamics near a wall in glass-forming systems. Nat. Mater. 10, 512–520 (2011).

  27. 27.

    Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695–700 (2003).

  28. 28.

    Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).

  29. 29.

    Sohn, S. et al. Nanoscale size effects in crystallization of metallic glass nanorods. Nat. Commun. 6, 8157 (2015).

  30. 30.

    Sebastian, A. et al. Temporal correlation detection using computational phase-change memory. Nat. Commun. 8, 1115 (2017).

  31. 31.

    Scheidler, P., Kob, W. & Binder, K. The relaxation dynamics of a supercooled liquid confined by rough walls. J. Phys. Chem. B 108, 6673–6686 (2004).

  32. 32.

    Ropo, M., Akola, J. & Jones, R. O. Crystallization of supercooled liquid antimony: A density functional study. Phys. Rev. B 96, 161–168 (2017).

  33. 33.

    Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car–Parrinello-like approach to Born–Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).

  34. 34.

    VandeVondele, J. et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

TECH|SCI

via Nature Materials https://ift.tt/1JxtiiI

June 18, 2018 at 11:14AM

What do you think about this?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s